Senin, 04 Maret 2013

KKPI

Setting Internet Modem Dial Up
 
Internet mungkin dah akrab sekali dengan kita,baik dengan wireless,modem,LAN. Nah kali ini gue akan membahas Setting koneksi internet dengan modem telepon rumah..
koneksi internet dengan telepon rumah mungkin tidak semurah dengan telepon rumah yang sudah berlangganan speedy
tapi gak da salahnya jika kita tau cara settingnya karena tidak begitu berbeda antara setting rumah biasa dan telpon rumah yang berlangganan speedy
jenis setting internet telepon rumah dengan modem ada 2 yaitu
internet dengan dial-up modem internal
inernet dengan modem external (ADSL)

kali ini yang modem dial-up dl ntar yang ADSL disambung ke artikel berikutnya
langsung aja ke materi :
  1. Pastikan modem sudah terpasang dan terinstall caranya buka control panel > phone and modem options > pilih tab modems jika modem sudah terinstall maka akan muncul nama modemnya klo gak da install lagi aja

  2. Buat koneksi internet baru  untuk dial up caranya masuk ke control panel > new connections > create a new connection > muncul new connection wizard > next
  3. Setelah itu ikuti seperti gambar dibawah ini
pilih connect to the internet
 
 
 pilih set up my connection manually
 
 
pilih connect using a dial-up modem
 
 
Untuk ISP name isi : telkomnet@instant
 
 
Masukan di phone number : 080989999
 
 
pada internet account  username : telkomnet@instant , password : telkom
 



  • jika sudah selesai settingnya tinggal klik dial aj ntar proses dialup akan berjalan jika berhasil maka akan tampil pop up "network is connected"

  • klo dah gitu check aja koneksi internetnya buka mozilla atau IE kemudian browsing dweh tapi kecepatan untuk telepon rumah memang tidak begitu cepat dibanding dengan telepon rumah dengan speedy n biaya juga lumayan mahal jadi gunakanlah secara bijaksana

Matematika


Matriks

Matriks adalah sekumpulan bilangan yang disusun secara baris dan kolom dan ditempatkan pada kurung biasa atau kurung siku.

Penulisan matriks:

\begin{pmatrix}
 2 & 3 \\
 1 & 4
\end{pmatrix}
atau

\begin{bmatrix}
 2 & 3 \\
 1 & 4
\end{bmatrix}
Ordo suatu matriks adalah bilangan yang menunjukkan banyaknya baris (m) dan banyaknya kolom (n).

\begin{pmatrix}
 2 & 3 & 5 \\
 1 & 4 & -7
\end{pmatrix}
Matriks di atas berordo 3x2.

Matriks Identitas (I)

Matriks identitas (I)adalah matriks yang nilai-nilai elemen pada diagonal utama selalu 1.
 I=
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix}

Matriks Transpose (At)

Matriks transpose adalah matriks yang mengalami pertukaran elemen dari baris menjadi kolom dan sebaliknya. Contoh:
 A=
\begin{pmatrix}
 2 & 3 & 5 \\
 1 & 4 & -7
\end{pmatrix}
maka matriks transposenya (At) adalah  A^t=
\begin{pmatrix}
 2 & 1 \\
 3 & 4 \\
 5 & -7
\end{pmatrix}

Operasi perhitungan pada matriks

Kesamaan 2 matriks

2 matriks dikatakan sama jika ordonya sama dan elemen yang seletak sama.
Contoh:  
\begin{pmatrix}
 2 & 3 & 5 \\
 1 & 4 & -7
\end{pmatrix}
=
\begin{pmatrix}
 2 & 6x & z-y \\
 2y+2 & 4 & -7
\end{pmatrix}
Tentukan nilai 2x-y+5z!
Jawab:
 6x=3 maka  x= \frac {1}{2}
 2y+2=1 maka  y= -\frac {1}{2}
 z-y=5 maka  z= \frac {9}{2}
 2x-y+5z
 = 2\left ( \frac{1}{2} \right ) - \frac {1}{2}+ 5 \left ( \frac{9}{2} \right )
 = 23

Penjumlahan matriks

2 matriks bisa dijumlahkan jika ordonya sama dan penjumlahan dilakukan dengan cara menjumlahkan elemen yang seletak.
Contoh:  
\begin{pmatrix}
 2 & 3 & 5 \\
 1 & 4 & -7
\end{pmatrix}
+
\begin{pmatrix}
 2 & 6x & z-y \\
 2y+2 & 4 & -7
\end{pmatrix}
=
\begin{pmatrix}
 4 & 3+6x & 5+z-y \\
 2y+3 & 8 & -14
\end{pmatrix}

Pengurangan matriks

2 matriks bisa dikurangkan jika ordonya sama dan pengurangan dilakukan dengan cara mengurangkan dari elemen yang seletak.
Contoh:  
\begin{pmatrix}
 2 & 3 & 5 \\
 1 & 4 & -7
\end{pmatrix}
-
\begin{pmatrix}
 2 & 6x & z-y \\
 2y+2 & 4 & -7
\end{pmatrix}
=
\begin{pmatrix}
 0 & 3-6x & 5-z-y \\
 -2y-1 & 0 & 0
\end{pmatrix}

Perkalian bilangan dengan matriks

Contoh:
 
3
\begin{pmatrix}
 2 & 6x & z-y \\
 2y+2 & 4 & -7
\end{pmatrix}
=
\begin{pmatrix}
 6 & 18x & 3z-3y \\
 6y+6 & 12 & -21
\end{pmatrix}

Perkalian matriks

2 Matriks dapat dikalikan jika jumlah baris matriks A = jumlah kolom matriks B.
Penghitungan perkalian matriks:
Misalkan:
A=
\begin{pmatrix}
 a & b \\
 c & d 
\end{pmatrix}
dan B=
\begin{pmatrix}
 p & q \\
 r & s 
\end{pmatrix}
maka  A \times B=
\begin{pmatrix}
 ap+br & aq+bs \\
 cp+dr & cq+ds 
\end{pmatrix}
Contoh:
 
\begin{pmatrix}
 2 & 6 \\
 3 & 4 
\end{pmatrix}
\begin{pmatrix}
 9 & 8 \\
 2 & 10
\end{pmatrix}
=
\begin{pmatrix}
 30 & 76 \\
 35 & 64
\end{pmatrix}

Determinan suatu matriks

Matriks ordo 2x2

Misalkan:
 A=
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
maka Determinan A (ditulis  \left\vert A \right\vert ) adalah:
 \left\vert A \right\vert= a \times d - b \times c

Matriks ordo 3x3

Cara Sarrus

Misalkan:
Jika  A=
\begin{pmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{pmatrix}
maka tentukan  \left\vert A \right\vert !
 \left\vert A \right\vert =
\left\vert
\begin{matrix}
 a & b & c \\
 d & e & f \\
 g & h & i 
\end{matrix}
\right\vert
\begin{matrix}
 a & b \\
 d & e \\
 g & h  
\end{matrix}
Penghitungan matriks dilakukan dengan cara menambahkan elemen dari kiri atas ke kanan bawah (mulai dari a → e → i, b → f → g, dan c → d → h) lalu dikurangi dengan elemen dari kanan atas ke kiri bawah (mulai dari c → e → g, a → f → h, dan b → d → i) sehingga menjadi:
 \left\vert A \right\vert = a.e.i + b.f.g + c.d.h - g.e.c - h.f.a - i.d.b
Contoh:
 A=
\begin{pmatrix}
 -2 & 0 & 1 \\
 3 & 2 & -1 \\
 1 & -3 & 5
\end{pmatrix}
maka tentukan  \left\vert A \right\vert !
 \left\vert A \right\vert =
\left\vert
\begin{matrix}
 -2 & 0 & 1 \\
 3 & 2 & -1 \\
 1 & -3 & 5
\end{matrix}
\right\vert
\begin{matrix}
 -2 & 0  \\
 3 & 2  \\
 1 & -3 
\end{matrix}
 \left\vert A \right\vert = (-2.2.5) + (0.-1.-1) + (1.3.-3) - (1.2.1) - (-2.-1.-3) - (0.3.5) = -20+0-9-2+6-0 = -25

Cara ekspansi baris-kolom

Misalkan:
Jika  P=
\begin{pmatrix}
 -2 & 0 & 1 \\
 3 & 2 & -1 \\
 1 & -3 & 5
\end{pmatrix}
maka tentukan  \left\vert P \right\vert dengan ekspansi baris pertama!
 \left\vert P \right\vert= -2
\left\vert
\begin{matrix}
  2 & -1 \\
 -3 & 5
\end{matrix} 
\right\vert
-0
\left\vert
\begin{matrix}
  3 & -1 \\
  1 & 5
\end{matrix} 
\right\vert
+1
\left\vert
\begin{matrix}
  3 & 2 \\
 1 & -3
\end{matrix} 
\right\vert
 \left\vert P \right\vert= -2 (10-3) -0 + 1(-9-2) = -25

Matriks Singular

Matriks singular adalah matriks yang nilai determinannya 0.
Contoh:
 P=
\begin{pmatrix}
 -4 &  5x\\
 -x & 20
\end{pmatrix}
Jika A matriks singular, tentukan nilai x!
Jawab:
 -80+5x^2 = 0
 5 (x^2-16)=0
 x = -4 vs  x=4

Invers matriks

Invers matriks 2x2

Misalkan:
 A=
\begin{pmatrix}
 a & b\\
 c & d
\end{pmatrix}
maka inversnya adalah:
 A^{-1}= \frac {1}{\left\vert A \right\vert}
\begin{pmatrix}
 d & -b\\
 -c & a
\end{pmatrix}
=
\frac {1}{a.d-b.c}
\begin{pmatrix}
 d & -b\\
 -c & a
\end{pmatrix}

Sifat-sifat invers matriks

 A . A^{-1} = I = A^{-1}. A
 (AB)^{-1}  B^{-1}. A^{-1}
 (A^{-1})^{-1} = A
 AI = A = IA

Persamaan matriks

Tentukan X matriks dari persamaan:
  • Jika diketahui matriks A.X=B
 A.X=B
 A^{-1}.A.X = A^{-1}.B
 I.X = A^{-1}.B
 X= A^{-1}.B
  • Jika diketahui matriks X.A=B
 X.A=B
 X.A.A^{-1} = B.A^{-1}
 X.I = B.A^{-1}
 X= B.A^{-1}